CBCS SCHEME

USN 15AE73		Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 Aircraft Stability and Control	9
	USN		

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Derive an expression for tail contribution $\left(\frac{C_M}{C_L}\right)_{tail}$ for the static longitudinal stability of an airplane and discuss the downwash at the tail. (10 Marks)
 - b. Define stick fixed neutral point. Write down the expression for stick fixed neutral point and discuss the effect of C.G. shift on pitching moment. (06 Marks)

OR

- 2 a. Given the general aviation aviation with the following configuration details: Gross weight = 2750 kg, velocity = 176 m/s, $X_{cg} = 0.295 \,\overline{C}$, span = 33.4M, $\overline{C} = 5.7$ M, Tail area = $43\,\mathrm{m}^2$, Tail arm = 16M, $\eta = 0.8$, $\frac{\mathrm{se}}{\mathrm{st}} = 0.3$, $C_{L_{\alpha t}} = 3.9/\mathrm{rad}$. Assume pitching moment curves for the landing configuration at the forward most C.G. position is given as $C_{m_{cg}} = -0.20 0.035\alpha$, where α in degrees. Estimate the elevator effectiveness and size of the elevator to trim the airplane at the landing angle of attack of 10° . Assume elevator angle is constrained to $+20^\circ$ and -25° .
 - b. Derive the expression for elevator control power: $C_{m_{Se}} = -V_H \eta C_{L_{ot}} \tau$. (06 Marks)

Module-2

- 3 a. Briefly explain Hinge moment parameters and trim tabs. (08 Marks)
 - b. Derive an expression for stick-free neutral point with necessary graphs. (08 Marks)

OR

- 4 a. Briefly explain the requirements of directional control and obtain the expression for rudder control effectiveness $C_{n\delta r}$. (10 Marks)
 - b. What is meant by 'Rudder lock' and 'Dorsal fin'? (06 Marks)

Module-3

- 5 a. Explain Dihedral effect. (04 Marks)
 - b. Explain the effect of wing sweep, flaps and power on dihedral effect with neat diagram.

c. What are the advantages and disadvantages of frise aileron? (08 Marks)
(04 Marks)

OR

- 6 a. Explain the various methods of aileron balancing. (06 Marks)
 - b. Define longitudinal dynamic stability and briefly describe the following with relevant sketches of phugoid motion and short period motion. (10 Marks)

Module-4

- 7 a. Derive rigid body equation of motion. (12 Marks)
 - b. Briefly explain gravitational and thrust forces acting on the airplane.

(04 Marks)

OR

- 8 a. Starting with X-force equation, use the small disturbance theory to determine the linearized force equation. Assume a steady level flight for the reference flight conditions. (10 Marks)
 - b. Obtain derivatives due to the pitching velocity.

(06 Marks)

Module-5

- 9 a. Explain Routh's criteria and factors affecting period and damping of oscillations. (08 Marks)
 - b. Write short notes on the following:
 - i) Effect of wind shear
 - ii) Cooper-Harper scale.

(08 Marks)

OR

10 a. Describe the dynamic lateral stability considering rudder free case.

(08 Marks)

- b. Explain the following:
 - i) Dutch roll
 - ii) Auto rotation-spin stability

(08 Marks)